周期信号的傅里叶变换:连续时间与离散时间

Dezeming Family

2022年4月14日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

_	一 连续时间周期信号的傅里叶变换														:	1						
	1 1	基本原理	里与推	导										 		 	 	 				1
	1 2	一个例	子											 	 •	 	 	 		•		1
=	离散	対间周期	引信号的	内傅里	計型	变换															:	2
	2 1	基本原理	里与推	导										 		 	 	 				2
	2 2	一个例	子											 	 •	 	 	 				3
参:	老文章	釱																			:	3

一 连续时间周期信号的傅里叶变换

11 基本原理与推导

首先给出连续时间周期信号的傅里叶级数和逆变换公式:

$$a_k = \frac{1}{T} \int_0^T f(x)e^{-jk\omega_0 x} dx \tag{-.1}$$

$$f(x) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk\frac{2\pi}{T}t}$$
 (-.2)

现在考虑一个信号 x(t),假设这个信号的傅里叶变换是一个面积为 2π ,出现在 $\omega = \omega_0$ 处的单独的一个冲激:

$$X(j\omega) = 2\pi\delta(\omega - \omega_0) \tag{-.3}$$

进行逆变换:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \tag{-.4}$$

$$\Longrightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega = e^{j\omega_0 t} \tag{-.5}$$

推广一下,如果 $X(j\omega)$ 是等间隔的一组冲激函数的线性组合:

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$
 (-.6)

则根据逆变换公式,就可以得到(这是一个周期信号):

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \tag{-.7}$$

这个式子与 Equ.(一.2) 完全一样。因此一个周期信号的傅里叶变换,可以看做是频率域上的一串冲激函数。

12 一个例子

假设有一个周期为T的周期冲激串:

$$x(t) = \sum_{-\infty}^{\infty} \delta(t - kT) \tag{--.8}$$

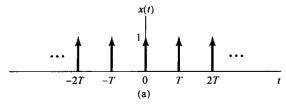
求出傅里叶级数为:

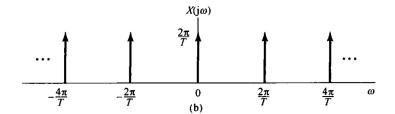
$$a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T}$$
 (-.9)

于是傅里叶变换就是:

$$X(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - \frac{2\pi k}{T})$$
 (-.10)

可以看到,周期为T的冲激串傅里叶变换后的周期是 $\frac{2\pi}{T}$,这也符合直觉,即周期变大时,频域间隔就会变小。





二 离散时间周期信号的傅里叶变换

21 基本原理与推导

对于离散周期信号 x[n], 其傅里叶级数为:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n}$$
 (\square .1)

考虑一个信号:

$$x[n] = e^{j\omega_0 n} \tag{-.2}$$

类似于连续周期信号,其傅里叶变换也应该是周期的。但是需要注意的是,离散时间傅里叶变换的结果对于 ω 来说一定是一个周期为 2π 的函数,所以 x[n] 的傅里叶变换应该是在 ω_0 , $\omega_0 \pm 2\pi$, $\omega_0 \pm 4\pi$, ... 等处的冲激串:

$$X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l)$$
 (\equiv .3)

验证该式:

$$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=0}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega \tag{\Box.4}$$

注意在一个 2π 长度的区间内只包含一个冲激,比如包含 $\omega = \omega_0 + 2\pi r$ 处的冲激,那么:

$$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = e^{j(\omega_0 + 2\pi r)n} = e^{j\omega_0 n} \tag{1.5}$$

对于一个周期序列 x[n], 傅里叶级数和傅里叶变换就是:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n}$$
 ($\stackrel{-}{-}$.6)

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \frac{2\pi k}{N}) \tag{2.7}$$

关于傅里叶变换怎么来的,我再多写一两步:

$$X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0 - 2\pi l) \qquad \left(k\omega_0 = \frac{2\pi k}{N}\right)$$
$$= \sum_{l=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \frac{2\pi k}{N} - 2\pi l) \qquad (\Xi.8)$$

这里的 l 并没有太多实际作用,而且毕竟 $X(e^{j\omega})$ 是周期为 2π 的函数,所以可以去掉(令 l=0)。因此,得到上述傅里叶变换结果 Equ.(二.7)。

2 2 一个例子

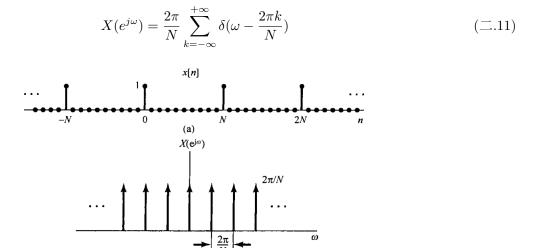
假设一个信号 x[n]:

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN] \tag{-.9}$$

傅里叶级数的系数为:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N}$$
 (\equiv .10)

所以傅里叶变换就是:



参考文献

[1] Signals and Systems Alan V. Oppenheim, Alan S. Willsky, with S. Hamid Nawab. Prentice Hall, 2013.